
CASE Tool for Object-Relational Database Designs

Thiago Rais de Castro

Petrobras Company

Rio de Janeiro, RJ, Brazil

thiagoraiscastro@gmail.com

Solange N. Alves de Souza

Dept of Computing Eng. and Digital System

University of São Paulo, SP, USP

São Paulo, Brazil

ssouza@usp.br

Luiz Sergio de Souza
Faculty of Technology (FATEC)

Carapicuíba, SP, Brazil

desouza.luizsergio@gmail.com

Abstract—In 1999, the SQL standard version presented new

features to manipulate objects in relational database which has

since been called Object-Relational Database (ORDB).

Nowadays, many Object-Relational Database Management

Systems (ORDBMS) offer resources to manipulate object in

database. However, for these resources to become really utilized

in corporate environment, it is necessary, among other things, to

have CASE tools to aid in object-relational database design. An

extension made in ArgoUML tool that permits developers to build

graphics schemas to ORDBs is presented. These schemas can be

generated using an ORDB profile presented here in. This profile

is an extension of the UML class diagram and contains elements

to represent the new resources to manipulate object in databases.

The tool maps the graphic schema to SQL:2003 code and SQL

code to Oracle dialect.

Keywords-component; Object-Relational Database; SQL:2003;

UML class diagram

I. INTRODUCTION

Nowadays, there are many CASE (Computer-Aided
Software Engineering) tools to aid generation and maintenance
of relational databases. Erwin, DBDesigner, DB-Main and
others are some of the examples. Such tools offer resources to
create graphic models and have an option for the automatic
generation of SQL (Structured Query Language) code for some
Database Management Systems (DBMS) (eg. Oracle,
PostgreSQL, etc.). It is possible to divide tools into two
categories: the first supports generation Entity-Relationship
Model (ERM) [8] and the second supports generation of table
models. In the first case, the developer creates a conceptual
model using the tool which offers resource for mapping from
that model to the table, in the other words, the tool generates a
logical model through generation of the appropriated SQL
code to the DBMS chosen. In the latter, the developer creates a
model of table, that is, a graphic logical model, which is
translated into the appropriated SQL code for the DBMS
chosen. In both cases, the tool generates the SQL code
automatically. This is important because the SQL code written
by the developers can contain more errors and depends on the
developers’ knowledge. The scenario gets worse for cases in
which code generation for more DBMS ones is necessary.

The use of a CASE tool for the generation of database
schemas increases developers’ productivity , since it frees
them from writing an SQL code. In addition, database
maintenance can be facilitated with the visualization of
databases schemas at conceptual or logical levels, since it
allows understanding database objects more easily and faster.

This article introduces an extension made in ArgoUML
CASE tool to allow the generation of graphic logical models
for Object-Relational Databases (ORBDs). The tool has
elements that allow developers to create a graphic model using
new available object resources in SQL:2003 specification
[1,2,5,9]. Thus, the impedance mismatch problem that occurs
when the object orientation (OO) paradigm and relational
databases are used may be removed. The Graphic Logical
Model built by the developer is an extension of the UML
(Unified Modeling language) class diagram. The automatic
translation from the graphic logical schema to the SQL code is
made by the tool. The extension in the ArgoUML was made
by adding two modules that permit the automatic generation of
code in SQL:2003 specification and Oracle 11g.

This article is organized as follows. Section II introduces
the architecture for ORDB design that shows all the
technologies involved in our proposal. Section III shows an
ORDB profile to support modeling graphic logical schemas.
Section IV discusses some related works and highlights
differences between previous works and the ones introduced
here. Section V describes the CASE tool architecture. Section
VI introduces the CASE tool result. Finally, Section VII
concludes the paper with a proposal for future work.

II. TECHNOLOGIES AND MODELS

The use of the UML class diagram for conceptual modeling
is an alternative to MER [6] which allows using a single model
to represent persistent and transient objects. Hence, it not only
eliminates the effort to make a specific model to represent
persistent objects, but also to check the consistence between
models generated. In addition, the UML class diagram has
elements to represent objects, different kinds of relationships
and intrinsic constraints of OO. As well as being an
appropriate choice, the extension of UML also decreases the

effort made to obtain a model representing the exclusive
elements for ORDB such as UDTs, typed tables and others.
The extension was made by creating an UML profile called
ORDB profile. The extension made in UML allows building
Object-Relational Logical Model and with ORDB CASE tool
developers can build graphic logical models defining elements
supported by ORDB.

The models and metamodels involved in the generation of
Object-Relational Logical Model are shown in Figure 1.
Abstraction levels connected with databases design are used to
represent the models and specifications corresponding to the
conceptual and internal levels of the ANSI/SPARC
architecture. It is possible to highlight the parallel between the
ANSI/SPARC architecture and the MDA (Model Driven
Architecture). In addition, at the logical design level, the
intersection between PIM (Platform-Independent Model) and
PSM (Platform-Specific Model) may be noticed. The PIM is
independent of specific technology, thus the developer only
has to be concerned about aspects related to business domain.
On the other hand, PSM considers some type of technology,
thus the physical level is connected to PSM. The logical design
level illustrated in Figure 1 is not related to any ORDBMS,
although it is connected with the physical design. However,
SQL:2003 is a specification of a specific technology: ORDB.
Figure 1 illustrates the logical design level as being the
intersection between PIM and PSM, since it is difficult to
discern which is better.

Figure 1. Metamodels and models involved in the generation of Object-

Relational Graphic Logical Model

The mapping among all levels of abstraction is made by
using XMI (XML Metadata Interchange) [7], Figure 1 shows
the conceptual schema as well logical ones which may be
easily transported to other CASE tools, in case it is necessary,
since XMI facilitates interoperability.

A. Graphic Logical Model

The Graphic Logical Model utilized to develop graphic
schemas of users is constituted by elements defined in ORDB
profile and in the UML (right side of Figure 1). For logical
separation of elements, the profile was organized into four
subpackages: stereotypes, stereotype methods, constraints and
data types SQL:2003. Table I introduces the elements
belonging to stereotypes, stereotype methods and constraints
subpackages. The first column in Table I indicates the name of
stereotype, the second describes the UML element in which the
stereotype is applied and the third describes the meaning of the
stereotype.

TABLE I. STEREOTYPES OF GRAPHIC LOGICAL MODEL

Stereotype
Basic

Element
Description

«table» Class Defines a table [6].

«udt» Class Defines a User Defined Type: can be

composed by one or more attributes,
to have methods and to generate

supertype-subtype hierarchy

«typed table» Class Defines a typed table: a table defined

as from an UDT.

«row type» Class Defines a row type: structure

composed by one or more fields.

«define» Association Defines a typed table as of an UDT.

«udt» Class Defines a User Defined Type: can be

composed of one or more attributes, to

have methods and to generate

supertype-subtype hierarchy

«static» Method Defines a static method of an UDT.

«constructor» Method Defines an UDT constructor method.

«instance» Method Defines an instance method, if any

stereotype is specified the instance

method is used.

«overriding» Method Utilized to overwrite the inherited

method.

«pk», «fk»,
«unique»,

«check» and

«not null»

attribute Defines stereotypes corresponding to
PRIMARY KEY, REFERENCES,

UNIQUE, CHECK and NOT NULL

constraints, respectively.

The SQL:2003 offers resources for method definition like
program application. Hence, in the logical model proposed, the
static, instance or constructor methods can be represented by
appropriated stereotypes, according to Table I. In addition, the
polymorphism is made with keyword overriding. The notations
included in the profile proposed and shown in Table I allow an
easy visualization, better understanding of the schema and
automatic code generation for a specific schema.

Tables II and III present a mapping proposal from an UML
class model (conceptual model) to OR logical model.

TABLE II. MAPPING FROM CLASS MODEL TO OR LOGICAL MODEL -

RELATIONSHIP

Association
Correspondent in a ORDB Logical

Schema

Bidirectional

association

Composition

aggregation

association

1..1

A cross reference is

defined, i.e., each class

keeps a reference (REF) to

another one

1..* a

A cross reference is also

defined, but the aggregator

class will have an Array or

a Multiset of references

Unidirectional Association

The same as in bi-directional

association, but only one table will
have the reference

N-ary Association (three or

more classes)

A table or an UDT is defined with the

association name.

Associative Class A table or an UDT is defined with the

name of associative class.

Generalization, Specialization An UDT is defined for each class in

the inheritance.

a. use Array if multiplicity is known, if not, use Multiset.

TABLE III. MAPPING FROM CLASS MODEL TO OR LOGICAL MODEL –

CLASS, ATTRIBUTE AND METHOD

Class

Diagram

ORDB

Logical

Schema

Justify

Class

Table
The logical model should be flexible. This

way, the developer should be free to

choose how to represent each class
according to the business characteristics.

UDT

Typed

Table

Row Type

Abstract

class UDT

An abstract class cannot be instantiated,

although it can be used to define a concrete

class (a class which can be instantiated). It

is thus possible to represent these cases

defining a UDT without a typed table

associated (data only can be persisted in a

typed table). Despite this, the UDT will

still be used to define other UDTs.

Simple

attribute

Build-in It is possible to find types such as real,

integer, character, etc in SQL.

Composite

Attribute

Row Type When defining methods connected to the

structure it is not intended, composite

attribute should be mapped in row type.

Multivalued

attribute

Array or

Multiset

Multidimensional structures are

appropriated to keep the same type of

attributes, i.e, which represent collections.

Methods UDT’s

Methods

Methods are defined in UDTs. If a class

method must be implemented by SGBD,

an UDT must be defined with the

appropriated method.

III. RELATED WORK

It is possible to classify previous works into three
categories: 1. one that uses the UML class diagram to build a
conceptual model which represents persistent objects
[1,3,4,10]; 2. one that focuses on efforts in the definition of the
mapping from conceptual objects to database objects using the
new ORDB resources [3,4,1]; 3. one that extends the UML
class diagram to represent new ORDB elements, making
possible to design a graphic logical model [9]. Despite all these

efforts, most of the application developers just map classes to
relational tables, failing to exploit the strength of O-R model
[2]. The lack of tools that support developers in the use of new
ORDB resources contributes to this situation.

Models used and produced by a tool to represent the
particularities of a specific business need to be flexible, easy
to understand and to use. Thus, the model proposed and used
by the tool presented here in has differences from the models
proposed by [3,4,1,9]. From our point of view, these
differences are important in practical cases. These differences
are highlighted as follows.

a) «udt»: Differently from the proposals by [4,9], in which

UDT is used only in field domains, here the UDT defined in

the logic schema can be utilized for specifying field domains

and typed tables (according to SQL:2003). In this way, the

UDT can be reused to define the other typed table.

b) «Object Type»: this stereotype is not defined in the

model proposed. Some authors [4,9] proposed «Object Type»

stereotype to represent the UDT and the typed table which

originated from this UDT. In this case, UDT and typed table

being represented by a single notation, it is not possible to

reuse the UDT. On the other hand, an UDT can be used to

generate one or more typed tables (if necessary to create typed

table having the same structure). Thus, in this work, an

association having «define» stereotype must be used to link an

existing UDT with a typed table.

c) «Knows»: this stereotype is not defined in the model

proposed. According to [4,9], if there is an association between

two classes (A and B) in a conceptual model, two associations

«Knows» would be included in a graphic logical model, one

from A to B and another from B to A. This makes the diagram

heavy visually and difficult to understand. Differently and

according to the UML class diagram, a single association line is

utilized to represent the relationship in the graphic logic model.

The CASE tool here proposed does the translation from the

graphic logical model to the SQL code. In this process, the

single association line is represented by appropriated attributes

(according to rules defined in the tool) in associated classes.

d) «REF» «Array» «row»: in [4,9] if there is an

association between two classes (A and B) in the conceptual

model, two attributes must be included in each class in the

graphic logical model, each one is associated with «REF»,

«Array» or «row» stereotype depending on the multiplicity of

association. This approach adds more graphic complexity from

our point of view. Furthermore, an association in the graphic

model can be implicitly represented by the line of relationship

and its multiplicity. Attributes would be used to represent line

and multiplicity only in SQL code. Therefore, these stereotypes

are not included in the model introduced here.

e) «row type»: [4,9] propose «row» stereotype applied to

attributes. Different «row type» stereotype is applied to class.

This allows reusing it, so the same row type can be used to

define the domain of attributes in different classes.

f) «overriding»: it is proposed to represent polymorphism,

similarly to SQL:2003. Differently, [4,9] proposed «redef»

stereotype.«def»: was proposed by [4,9] to represente an

abstract method. However, the SQL:2003 specification does

not include the concept of abstract method, which is hence not

included in our model.

Besides the stereotypes shown above, others are introduced
in our model and they are presented as follows.

g) «typed table»: It is utilized to represent a typed table.

h) «define»: it is utilized to associate a typed table with an

UDT.

i) «static», «constructor», «instance»: in SQL:2003

different types of method are defined, the UML notation is thus

proposed.

IV. EXTENSION MADE TO ARGOUML ARCHITECTURE

The ArgoUML architecture is illustrated, in general lines,
in the upper part of Figure 2. An ArgoUML module is a
collection of classes and resources of files (such as SQL:2003
profile which is a XMI file) that can be enabled or not. The
tool offers resources to extend it from the addition of new
modules (that is, Java classes must be extended). These
modules are independent among them and have well defined
scopes (for example, a specific module to Java, another to .Net,
another to SQL, etc).

Figure 2. Architecture of the CASE tool proposed

The tool may be extended using these resources in a
relatively simple way and without changing the code of the
tool. As soon as the new installed module is recognized by the
ArgoUML modules, the load system will receive calls which
will be answered through specific actions such as generating
code, exhibiting ORDB profile, etc.

According to previous arguments, the choice was to extend
the tool using its own resources because, in the other option, it
would be necessary to spend extra effort in tests, verification
and validation which were not the main focus of this work.

Figure 2 shows the architecture of ArgoUML CASE tool with
the extension made to generate the logic model for ORDB.

In Figure 2, the modules built to generate the logic model
for the SQL:2003 specification and for an DBMS (example:
PostGreSQL, Oracle, BD2, SQL Server, etc.) are introduced.
The graphic model created will be translated by the tool to the
SQL dialect connected with the DBMS chosen. As new
DBMSs have to be supported by the tool, new modules will be
added. Modules built (Figure 2) and ArgoUML components
linked to them are detailed as follows.

• Controllers: are Java classes available to ArgoUML;
they are used to run module specific actions such as
generating SQL code for the selected element on GUI,
generating an SQL code to all the schema elements,
etc. The controllers work as an interface of the
SQL:2003 module or the specific DBMS (e.g. Oracle
11g, DB2, Postgre SQL, etc).

• Transformers: are components of the SQL:2003
module (or DBMS) that implement the
IStrategyCodeGenerator interface for each element of
the ORDB profile. These components operate the
translation from graphic logical model to SQL:2003
code or to SQL code for the DBMS chosen.
Transformers use OR Graphic Logical Model and the
catalogue of SQL code (from the SQL:2003 or the
DBMS chosen) to do translation users’ schemas.

• SQL Code Catalogue: contains the code of the
SQL:2003 or the DBMS chosen.

• OR Graphic Logical Model: the model made with
elements defined in ORDB profile and stored in XMI.
This profile is accessed via modules developed
through a Models Management component.

• Models Management: manages models maintained by
the system.

• Code Generation Subsystem: supports an interface for
the SQL modules.

• Module Loader: offers resources to load (and to
unload) auxiliary modules.

A. Mapping from the Graphic Logic Model to SQL Code

In general, there are differences among the SQL code
generated by different ORDBMS (e.g. PostgreSQL,
SQLServer, etc) and these codes can differ from the SQL
specification, too; moreover, an element defined in the ORDB
profile may not be supported by ORDBMS. On the other hand,
the SQL specification supports all the elements defined in the
ORDB profile, so, to translate from the Graphic Logical Model
into the SQL code, SQL:2003 was chosen for building the
model. Oracle 11g was chosen due to its support of almost all
the elements defined by the SQL pattern. Furthermore, it has
been employed as an academic and as a corporate project
having both small and large sizes.

From ORDB stereotypes, it was possible to map profiles to
their respective codes in SQL:2003 and Oracle 11g. In some
cases, there is no straight mapping in Oracle 11g, for these

.

cases, the CASE tool will show messages that will suggest the
action will be made. It is important to highlight the decision
must be taken by the developer.

V. MAIN ORDB MODULE FUNCTIONALTIES

The ArgoUML, through the GUI component (Figure 2),
offers menus, flaps and panels to other subsystems, external
models and users. The modules developed are connected with
the tool using GUI.

Figure 3 illustrates the main window of ArgoUML. In this
figure, there are a menu bar (number 1), a tool bar (number 2)
and four main panels: Explorer (number 3), Edition (number
4), Task (number 5) and Detail (number 6).

ArgoUML offers resources to build UML class diagram.
The modules developed, introduced in section 4, extend these
resources with new elements through ORDB profile (section
II).

The graphic logical schemas are made in the Edition panel
(number 4 of Figure 3). For this, the ORDB profile may be
accessed using flaps from the Detail panel or by the Edition
panel itself. The developer can take short cuts of the tool bar
(number 2 of Figure 3) to build new diagrams, to save the
current project and others.

Figure 3. Main Window of ArgoUML.

The Explorer panel (number 3, Figure 3), enlarged in
Figure 4, details the elements of the ORDB profile. It is
important to notice that these elements are organized into
packages, as discussed in section III.

Figure 4. Example of a figure caption. (figure caption)

The Properties flap (number 6, Figure 3) is defined to all
the elements of the logic schema and it permits to
create/update/delete attributes, operations, relationships and
others.

The language, that is, the SQL dialect (SQL:2003 or Oracle
11g), can be selected in the Source flap (number 6, Figure 3).
Script generation to export schema is made in this option, too.
Finally, the selection of objects for to SQL code generation is
made in the menu bar (number 1, Figure 3).

The extension made in ArgoUML allows the developer to
create the graphic logical schema for an application (Figure 3,
number 4). Then, the SQL code for specific dialect (SQL:2003
or Oracle 11g) can be generated by the tool according to the
options made by the developer.

VI. CONCLUSIONS AND FUTURE WORK

An extension to ArgoUML CASE tool to generate logical
models to ORDBMS is proposed. The objective is to increase
the use of ORDB. Experience has shown that the existence of
tools that support technologies broadens their use.

The new modules added to ArgoUML use the Graphic
Logical Model to generate, respectively, SQL code in Oracle
11g dialect and SQL:2003 dialect from graphic logical schema.

The tool introduced shows that our proposal is viable.
However, to use it in real projects, it is necessary to make
improvements such as new modules connecting to other
SGBDs that offer support to objects besides changes in the tool
interface to better represent the new resources and the

automatic generation of logical schemas to ORDB as from a
conceptual model (UML classes diagram) (Figure 1).

The mapping of class diagrams to generate logical schemas
has been investigated; it is necessary to consider that one class
diagram element may be represented by different elements in
the logical model. For example, the mapping of a class can
originate a UDT, or a row type, or a table, or a typed table (see
table III).

References

[1] G. Feuerlicht, J. Pokorný, K. Richta, “Object-Relational Database
Design: Can Your Application Benefit from SQL:2003?”, Galway,
Ireland: Springer, p. 1-13. 2009.

[2] M. Fotache, C. Strîmbei, “Object-Relational Databases: An Area with
Some Theoretical Promises and Few Practical Achievements”,
Communications of the IBIMA, v. 9, ISSN 1943-7765, 2009.

[3] Golobisky, M. F.; Vecchietti, A. Mapping UML Class Diagrams into
Object-Relational Schemas. Proceedings of Argentine Symposium on
Software Engineering, Rosario, Argentina, p. 65-79, 2005.

[4] Marcos, E. and Vela, B. and Cavero, J. M. A Methodological Approach
for Object-Relational Database Design using UML. Heidelberg/Springer
Berlin: Software and Systems Modeling, v. 2, n. 1, p. 59-72, 2003.

[5] J. Melton, “Database languages SQL: Part 1 Framework
(SQL/Framework)”. ISO-ANSI WD 9075, ISO, Working Group WG3,
2003G.

[6] B. S. Navathe, R. Elmasri, Sistemas de Banco de Dados. São Paulo.
Pearson Education.

[7] OMG. MOF 2.0/XMI Mapping - Version 2.1.1. Disponível em: <
http://www.omg.org/cgi-bin/doc?formal/07-12-02> 2007.

[8] A. Silberschatz, H. Korth, S. Sudarshan, Sistemas de Banco de Dados;
Campus, 1a edição. 2006.

[9] J. M. Vara, B. Vela, J. M. Cavero, E. Marcos, “Model Transformation
for Object-Relational Database Development”. ACM symposium on
Applied computing, New York, NY, p. 1012-1019, 2007.

[10] M. Wang, “Using UML for Object-Relational Database Systems
Development: A Framework”, Issues in Information Systems, vol. IX,
no. 2, pp.538-543, 2008.

.

